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In dynamic and complex natural environments, a number of individuals such as fireflies, flocks of birds, schools of fish, and
pacemaker cells show various synchronization phenomena, with the purpose of achieving their certain goals in an efficient and
distributed manner. So far, there has been considerable research attention on the working principles behind synchronization
phenomena in nature and, as a result, various models and theoretical investigation have been developed to apply synchronization
principles to various mobile communication systems. In this article, we present an exploration of synchronization phenomena
in nature. Some representative models on synchronization are investigated and its working principles are analyzed. In addition,
we survey some key applications inspired by synchronization principles for the future mobile communication systems. The
characteristics and limitations of the applications inspired by synchronization in nature are evaluated in the context of the use
of nature-inspired technologies. Finally, we provide the discussion of further research challenges for developing the advanced
application of natural synchronization phenomena in the future mobile communication systems.

1. Introduction

The inclination of living entities, ranging from animals
to humans, to synchronize with each other is the most
common tendency in the universe [1]. Thousands of fireflies
synchronously illuminate, while geese fly at the same speed in
formation. Applause at concert hallsmerges to produce a har-
monized sound in time, and themenstrual periods of women
who closely interact for a long time also synchronize. Thou-
sands of cardiac pacemaker cells in the heart fire in synchro-
nization to sustain life. Inanimate objects, such as particles
and planets, synchronize as well. Laser beams are created
when trillions of atoms oscillating in sync emit photons of
the same phase and frequency. Moreover, only one side of
the moon can be viewed because the orbital and rotational
periods of the moon are synchronized by the gravitational
pull between the earth and moon.

As shown in the above examples, synchronization occurs
with both conscious living organisms and inanimate objects

without consciousness. A key aspect of this phenomenon is
that it does not involve a leader who directs the behavior,
nor does it require the obtaining of clues from the sur-
rounding environment. Rather, the entities synchronize in a
certain rhythm. In other words, this order of synchronization
emerges—it naturally occurs out of “nothing”—in all cases
[2].

Fireflies, flocks of birds, schools of fish, and pacemaker
cells are all modeled as populations of oscillators [3]. An
oscillator is an entity that continues to repeat itself in a regular
time interval. If more than one oscillator influences another
oscillator through a physical or chemical process, they are
considered to be connected. Fireflies communicate through
light, birds in a flock identify their respective position using
their sight, and pacemaker cells transmit electric currents to
each other. Nature utilizes all available communication chan-
nels for the connecting of oscillators. This kind of communi-
cation often results in synchronization.
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Figure 1: A taxonomy of models of synchronization in nature.

Synchronization in nature has been attracting consider-
able research attention and has been applied to theoretical
investigations and a variety of mobile communication and
networking systems [4–6]. Some examples of its applications
include time synchronization and scheduling in large-scale
distributed networks; distributed fusion in sensor networks;
rapid consensus in various network topologies; distributed
formation control of multiple vehicles; and solutions of
nonlinear optimization problems. Due to the advancement
of communication technologies in the last few years, the
number of nodes available for networking is dramatically
increasing. Consequently, applications that are intended to
achieve collective goals through cooperation among nodes
are increasing. However, the conventional approach of con-
trolling numerous nodes in a centralized system has lim-
itations in terms of cost, complexity, resource availability,
and performance.Therefore, approaches inspired by the phe-
nomena of natural orders, such as synchronization—which
efficiently achieve certain goals in complex environments
with various constraints—are being investigated to address
complex engineering problems.

In this article, we examine synchronization phenomena
in nature, elucidate representative mathematical models con-
cerning synchronization, and investigate the principles of
synchronization. We then introduce some applications that
apply synchronization principles to communication network
systems. We thereby analyze the attributes and limitations of
nature-inspired synchronizationmethods. Finally, we discuss
research challenges for developing the advanced applications
based on synchronization phenomena in the future mobile
communication systems.

The remainder of this article is organized as follows.
Section 2 overviews representative theoretical studies on
synchronization, and the principles of synchronization are
investigated. Section 3 examines major applications based
on these principles. Section 4 describes challenges involved
in applying synchronization phenomena. Section 5 discusses
the similarities between synchronization in nature and cer-
tain engineering problems, while highlighting the use of
nature-inspired technologies. Section 6 presents our conclu-
sions.

2. Principles of Synchronization

In this section, representative theoretical synchronization
models are outlined to elucidate synchronization principles
and related conditions. The taxonomy of synchronization

model is provided in Figure 1, which is classified by the objects
in nature that inspire to make each synchronization model.

2.1. Reynolds Flocking Behavior Model. Reynolds created the
first behavioralmodel of animal groups, such as those of birds
and fish, and he demonstrated their behaviors through com-
puter simulation [7]. In this “flocking” model, animal group
behavior aligns with three rules—separation, alignment, and
cohesion—as shown in Figure 2. Each animal in a group
independently controls its own position and speed based on
these rules. According to the separation rule, each animal
tends to maintain a certain distance from its neighboring
group members. In the alignment rule, each animal tends to
determine its heading direction in accordance with the aver-
age direction of its neighboring group members. According
to the cohesion rule, each animal tends to steer itself toward
the average position of its neighboring group members to
avoid being separated from them. An animal’s neighbors in
this context are determined according to the physical distance
between the respective animal and the surrounding animals,
as well as their respective visual fields. The other group
members that are not recognized in this way are excluded
from the calculation. Accordingly, each animal in the group
adjusts its position and speed based on the average position
and speed of its neighbors in accordance with the three rules.
After a period of time, the animals move at the same speed in
the same distance.That is, synchronization occurs in terms of
distance and speed.

2.2. Peskin Pacemaker Cell Model. Peskin modeled cardiac
pacemaker cells as a parallel circuit with capacitance and
resistance [8]. This electrical circuit is charged along a
gradually increasing curve and fires when the voltage reaches
a certain threshold, as shown in Figure 3. Thereafter, the
voltage resets and a new cycle begins.That is, this behaves like
an oscillator. The pacemaker cell model mimics the periodic
firing of cardiac cells and decreasing of voltage to the bottom
of a curve.

Then, Peskin modeled the cardiac cellular phenomenon
as a network of electrical oscillators. Among𝑁 oscillators, the
voltage of the 𝑖th oscillator, 𝑥𝑖, is modeled as

𝑑𝑥𝑖
𝑑𝑡

= 𝑆0 − 𝛾𝑥𝑖, 0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑆0 is the initial value and 𝛾 indicates the rate of dis-
sipation. The 𝑖th oscillator fires when 𝑥𝑖 = 1 and it regresses
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Figure 3: Cardiac pacemaker cell model.

to 𝑥𝑖 = 0. Oscillators influence each other through firing. If
an oscillator fires, either the voltages of the other oscillators
that detect it increase by coupling strength 𝜖 or they fire when
their voltages increase beyond the given threshold. This rule
is expressed as

𝑥𝑖 (𝑡) = 1 󳨀→ 𝑥𝑗 (𝑡
+) = min (1, 𝑥𝑗 (𝑡) + 𝜖) , ∀𝑗 ̸= 𝑖. (2)

Assuming that all oscillators are identical (i.e., they have the
same charge curve) and are coupled by the same strength,
Peskin proved that two oscillators always simultaneously
converge and fire, even when starting activity in random
initial conditions.

2.3. Strogatz Pulse-Coupled Oscillator Model. Mirollo and
Strogatz modeled the synchronization phenomenon of enti-
ties into a pulse-coupled oscillator (PCO) [9]. PCO has an
integrated clock. It emits pulses along a certain defined cycle
and receives the pulses of other oscillators through the media
existing between them. When receiving these pulses, each
oscillator adjusts its internal clock according to appropriate
clock adjustment rules.The synchronization then occurs after
a period of time.

Figure 4 illustrates the PCO phase synchronization pro-
cess. In the PCOmodel, each node acts as an oscillator with a
fixed time cycle, 𝑇. The oscillator has an internal time phase,
𝑡, and increases at a certain rate from 𝑡 = 0 to 𝑡 = 𝑇. When
𝑡 = 𝑇, the nodes fire and the phase is reset to 𝑡 = 0. At
that point, the surrounding nodes that detect the firing signal

f(t)
Fire Fire

Threshold

𝜖

0 T 2T
t

Figure 4: PCO phase synchronization process.

adjust their phases of 𝑡 to the upper point to shorten the time
until firing. The new phase value, 𝑡update, is determined as

𝑡update = 𝑓−1 (𝑓 (𝑡) + 𝜖) , (3)

where firing function 𝑓 should be an asymptotically increas-
ing concave function, and the increased amount 𝜖 is a real
number smaller than 1. When the value of 𝑡update is greater
than𝑇, the node immediately fires and 𝑡update is reset to 0.The
nodes initiate activity with different 𝑡 values; nonetheless, in
accordance with the same rules, their phases of 𝑡, respectively,
converge to the same value in the course of time.

Strogatz generalized the coupled oscillator model of
Peskin into 𝑁 oscillators. According to Strogatz model,
under the assumption that all oscillators are identical and
connected, it is proved that𝑁 oscillators with random initial
values always synchronize. However, it was found that PCO
model synchronization is not realized in actuality when noise
or a pulse transmission delay exists [10].

2.4. Kuramoto Firefly Model. Assuming that identical oscil-
lators are weakly coupled and the interactions between the
oscillators are dependent on the sine function of the phase
difference, Kuramotomodeled the synchronization of fireflies
as

𝑑𝜃𝑖
𝑑𝑡

= 𝜔𝑖 −
𝐾
𝑁

𝑁

∑
𝑗=1

sin (𝜃𝑖 − 𝜃𝑗) , 𝑖 = 1, 2, . . . , 𝑁, (4)

where 𝜃𝑖 is the phase of each individual, 𝜔𝑖 is the frequency
of each individual, and 𝐾 is the coupling strength [11–13].



4 Mobile Information Systems

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) Initial state
0

−1

−0.5

0

0.5

1

0.5 1−1 −0.5
(b) After convergence

Figure 5: Phase synchronization phenomenon according to the Kuramoto model.

In the initial state before synchronization, each individual
oscillates at its own frequency, and its phase differs from those
of the others. However, the phase of each individual changes
in time through interactions by sin(𝜃𝑖 − 𝜃𝑗). Ultimately,
synchronization occurs when the phases of all the individuals
converge, as shown in Figure 5.

Unlike the Strogatz model, the Kuramoto model con-
siders oscillators that have different natural frequencies and
assumes that the interactions of the oscillators are limited
to the sine function. Therefore, the Kuramoto model can
be exactly solved in mathematical terms, even though it
is a nonlinear model. This model achieves synchronization
with a random initial value on the condition that 𝐾 value is
sufficiently large in a fully connected network [14]. However,
synchronization is not always guaranteed when the differ-
ences of the natural frequencies of the oscillators transcend
a specific range or when a transmission delay exists [15].

2.5. Cucker–Smale Flocking Model. Cucker and Smale math-
ematically modeled the flocking behavior of birds in flight as

V𝑖 (𝑡 + 1) − V𝑖 (𝑡)

= 𝜆
𝑁

𝑁

∑
𝑗=1

Ψ(󵄨󵄨󵄨󵄨󵄨𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨󵄨) (V𝑗 (𝑡) − V𝑖 (𝑡)) ,

(5)

where 𝑥𝑖(𝑡) and V𝑖(𝑡) are the position and velocity of the
𝑖th bird at time 𝑡, respectively [16]. 𝑁 is the total number
of birds, 𝜆 is the coupling strength among the birds, and
Ψ is the communication range function with input of the
distance between two birds. For example, if each bird in a
flock has only information of the adjacent birds within a
certain distance, 𝑟, then Ψ = 1 when |𝑥𝑗 − 𝑥𝑖| ≤ 𝑟 and Ψ =
0 otherwise. As expressed in (5), the Cucker–Smale flock-
ing model shows that each bird adjusts its velocity by aver-
aging the velocity of its perceived neighbors. Therefore, this
model can be a mathematical representation of the Reynolds
flocking behavior model.

Cucker and Smale considered various Ψ functions and
proved the synchronization conditions for the general Ψ
functions in which path loss is proportional to distance [16,
17]. They proved that the convergence value by (5) becomes
the average of the initial velocities of the birds. Additionally,
they showed that the position of each bird does not diverge;
rather, it remains within a certain range of space when
converging. The convergence characteristics of the Cucker–
Smale model are expressed as

V𝑐 fl lim
𝑡→∞

V𝑖 (𝑡) =
1
𝑁

𝑁

∑
𝑖=1

V𝑖 (0) ,

for ∀𝑖,

sup
0≤𝑡<∞

󵄨󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨 < ∞, for ∀𝑖 ̸= 𝑗.

(6)

Figure 6 shows the simulated synchronization phenomenon
of bird flocking according to this model.

2.6. Olfati-Saber ConsensusModel. In dynamic systems, such
asmultiagent networks, the term “consensus” is used tomean
“synchronization” [18]. Consensus connotes the reaching of
an agreement regarding a certain quantity of interest that
depends on the state of all agents. The consensus algorithm
refers to an interaction rule that specifies the information
exchange between an agent and all of its neighbors in the
network in order to reach a consensus.

In accordance with continuous time and discrete time
intervals in a linear system, a generalized consensus algo-
rithm is, respectively, expressed as

𝑥󸀠𝑖 (𝑡) = ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)) ,

𝑥𝑖 (𝑘 + 1) = 𝑥𝑖 (𝑘) + 𝜖 ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝑥𝑗 (𝑘) − 𝑥𝑖 (𝑘)) ,
(7)

where 𝑥𝑖(𝑡) is the status value of node 𝑖 at time 𝑡,𝑁𝑖 is the set
of neighboring nodes of node 𝑖, 𝑎𝑖𝑗 is the coupling strength
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Figure 6: Synchronization phenomenon of bird flocking in three-dimensional space according to the Cucker–Smale flocking model.
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Figure 7: System model of synchronization.

between the two nodes, 𝑖 and 𝑗, and 𝜖 > 0 is the step size.
According to (7), the change of the status value of each node
is determined by the sumof the differences of the neighboring
nodes’ state values. Based on these algorithms, the status
value of each node converges in time to the average of the ini-
tial values of all the nodes. It is given as

𝛼 = 1
𝑁

𝑁

∑
𝑖=1

𝑥𝑖 (0) , (8)

where 𝑁 is the total number of nodes. The expressions and
convergence result of this kind of consensus algorithm cor-
respond to those of the Cucker–Smale model.

Various theoretical studies have been conducted on the
consensus model and their convergence rate has been ana-
lyzed. Equations (7) can be simply converted into the matrix
forms as follows:

x󸀠 = −Lx,

x (𝑘 + 1) = Px (𝑘) ,
(9)

where L is a Laplacian matrix and P is a Perron matrix.These
matrices are determined according to the given network
topology. The convergence rate of each consensus algorithm
is determined depending on the second smallest eigenvalue
of Laplacian L and the second largest eigenvalue of Perron P,
respectively [18].

2.7. Synchronization System Model. In synchronization stud-
ies to date, the action of each individual is mathemat-
ically modeled. Then, the existence of convergence, the
convergence value, and the convergence rate are theoret-
ically analyzed based on the various conditions, such as
the number of participating nodes, initial values, network
topology, coupling strength between nodes, delay, noise,
and path loss. The principle of synchronization algorithms
is that each node repeats the process of updating its own
information using only the information of the neighboring
nodes. This update approach can thus be represented as the
local average algorithm by which the convergence value is
decided solely based on the average of the initial values. This
synchronization algorithm can bemodeled into a generalized
system with inputs and outputs, as depicted in Figure 7.

3. Applications of Synchronization

In this section, we introduce some major applications based
on synchronization principles, focusing on communication
and networking systems. The taxonomy of synchronization
applications is provided in Figure 8, which is classified by the
major applications used in communication and networking
systems.

3.1. Distributed Time Synchronization. In an environment
in which many nodes exist and the network dynamically
changes according to the movements, entering, and exiting
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of nodes—such as in mobile ad hoc, wireless mesh, and
sensor networks—a nature-inspired distributed synchroniza-
tion method is more suitable than the conventional cen-
tralized synchronization methods. Various studies on this
premise have been conducted. A synchronization method
for node transmission time was suggested by applying the
synchronization principle of fireflies to a large-scale network
[19, 20]. Therein, the Strogatz PCO model was applied to
a large-scale sensor network. Synchronization performance
was then analyzed according to the number of nodes and
optimized according to the tradeoff of the energy efficiency
and convergence rate [21]. A technique for synchronizing
the timing of separate networks was suggested by using
the positions and mobility of the nodes in mobile ad hoc
networks [22]. A distributed frequency synchronization tech-
nique using a bioinspired algorithm was suggested to solve
the problem of multiple frequency offsets in mesh networks
wherein multiple nodes have different carrier frequencies
[23]. Lastly, a synchronization method was suggested for
realistic situations in which a time delay occurs across nodes
and not all of them are connected [15, 24].

3.2. Desynchronization. Unlike synchronization, by which
oscillators converge to the same time phase, desynchroniza-
tion (DESYNC) separates the oscillators as far as possible

from each other. As a result, the phase differences of all the
nodes become the same. In DESYNC, the synchronization
target is not the phase value itself; instead, it is the phase
difference between the nodes. A distributed DESYNC algo-
rithm based on the PCOmodel was suggested for the desyn-
chronizing of time event [25, 26]. As shown in Figure 9, each
oscillator detects the firing of another oscillator immediately
before and immediately after its own firing. It adjusts its own
phase to the medium position of the firing time of its two
neighbors. This process is repeated and DESYNC is com-
pleted.

A round-robin scheduling method that fairly allocates
resources in a distributed manner without access colli-
sion was suggested by applying the DESYNC algorithm to
time-division multiple access (TDMA) scheduling [25, 26].
DESYNC-based TDMA scheduling enables high throughput
and low control overhead, even in a heavy load, because
it does not induce signaling messages for scheduling. Fur-
thermore, a distributed scheduling method was proposed
by applying DESYNC to multihop networks. This approach
flexibly controls the transmission intervals between nodes in
a situation wherein the nodes randomly enter or exit [27].
Lastly, proportional fair scheduling was achieved by enabling
each node to operate two oscillators through the expansion
of the DESYNC algorithm [28].
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3.3. Distributed Fusion in Sensor Networks. In a sensor net-
work, it is necessary to reduce the amount of transmitted
information through the fusion of sensed information in
intermediate nodes, rather than to concentrate all informa-
tion sensed from each node to a center and simultane-
ously compute it. In particular, as the number of nodes
increases, the amount of sensed information to transmit
rapidly increases. Thus, the fusion of sensed information is
more necessary in various parts of the network. The fusion
of sensed information is a process in which multiple sensor
nodes cooperatively make a decision. This process is used to
extract a useful piece of information by reaching a consensus
among the nodes.

Various methods that compute the average in a dis-
tributedmanner in sensor networks were suggested to realize
the Kalman filter in this context [29, 30]. Additionally, the
linear least-squares estimator (LSE) method was proposed to
compute an average based on the consensus among network
nodes [31]. Lastly, to more efficiently compute the average of
sensed information, low and high pass consensus filters were
suggested [32].

3.4. Network Design for Fast Synchronization. Nature-in-
spired synchronization algorithms require iterations and thus
require time to obtain the desired convergence value. To over-
come this constraint, the development of a network design
that achieves fast synchronization is an active research topic.
In [33], for example, a study on shortening the convergence
time of a synchronization algorithm was presented. The
convergence timewas reduced by varying theweight, which is
multiplied for each operation when the average is calculated.

In another study, the weight was fixed and the network
topology was varied to stimulate faster synchronization [34,
35]. When a small-world network was created by rewiring
random nodes in a given network topology, it was confirmed
that the synchronization speed is dramatically faster. Fig-
ure 10 shows the difference in convergence times between
a regular network, in which 100 nodes are wired within
three hops, and a small-world network, wherein an additional
connection is made between random 300 nodes on the
regular network.

3.5. Distributed Formation Control. The multivehicle system
is an important networking system for commercial and
military applications. Controlling the number of vehicles to
be automatically driven in a certain formation requires coop-
eration between nodes. It is thus necessary for the vehicles to
synchronize to achieve their collective mission. It was proven
that distributed multivehicle formation control is a matter
of synchronization and a related theoretical framework was
developed [36].

In addition, the matter of a space rendezvous is regarded
as a synchronization problem concerning the position of
various individuals that interact [37, 38]. In the rendezvous
problem, the occurrence of convergence according to the
network topology is important; however, it is irrelevant to
the convergence value. Furthermore, a theoretical framework
was developed for the design and analysis of a flocking algo-
rithm that avoids collision with obstacles [39]. For flocking,

the relation with obstacles should be considered as well as the
interaction between individuals. In this study, the synchro-
nization algorithm is used to enable an individual to avoid
colliding with obstacles and other individuals based only on
the information of the surroundings, while synchronizing the
velocities of all individuals.

3.6. Solution for Optimization Problems. Variousmetaheuris-
tic optimization methods based on swarm intelligence
were suggested, some examples of which include particle
swarm optimization, ant colony optimization, and bee colony
optimization [40]. In this type of optimization technique,
numerous particles repeatedly explore a multidimensional
solution space by exchanging information with each other to
determine themost optimal value.This approach is similar to
the synchronization phenomenon in the sense that various
individuals interact in a distributed manner and converge
toward a single optimal point. However, it does not align
with the basic synchronization algorithm, which obtains the
average of the local information of interest.

For a certain optimization problem, it was proven that
the optimal solution is to synchronize specific variables
[41–43]. When the value sought by each individual has a
“solidarity” property (i.e., the increase/decrease of the value
of an individual causes the decrease/increase of the values
of the others) and the objective problem is to maximize the
minimum of these values (i.e., the max–min objective prob-
lem), it was proven that the optimal solution is to make these
values equal, that is, to synchronize them.

Based on the above proposition, [41] suggested a dis-
tributed transmit-power control algorithm that maximizes
the end-to-end throughput in wireless multihop networks
and [43] proposed a distributed transmit-power control
algorithm that minimizes the outage probability in wireless
cellular networks.The rate of each link in thewireless network
has a solidarity property on account of mutual interference.
Moreover, the end-to-end throughput in multihop networks
is decided by the minimum value of the rates of links con-
sisting of a multihop path. Thus, the maximization problem
of multihop end-to-end throughput has the following max–
min objective problem:

max
P

𝑅𝑒2𝑒 = max
P

min {𝑅12, 𝑅23, . . . , 𝑅𝑛(𝑛+1)} , (10)

where vector P indicates the transmit power set of 𝑛 trans-
mitting nodes and 𝑅𝑖𝑗 denotes the rate of each link on
the multihop path. Therefore, in this problem, the optimal
solution is tomake the transmission rate of each link equal. To
this end, a synchronization algorithm of each link rate based
on the Cucker–Smale flocking model [16] was proposed as

𝑅𝑖𝑗 (𝑡 + 1) − 𝑅𝑖𝑗 (𝑡)

= 1
𝑛

∑
∀𝑘,𝑙=𝑘+1

Ψ (󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑥𝑖
󵄨󵄨󵄨󵄨) (𝑅𝑘𝑙 (𝑡) − 𝑅𝑖𝑗 (𝑡)) .

(11)

To support the link rate determined by (11), each transmitting
node performs the transmit power control in each time slot.

In both the maximization problem of multihop end-to-
end throughput in [41] and the minimization problem of
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Figure 10: Comparison of convergence times between a regular network and a small-world network.

outage in [43], the synchronization phenomenon of each
link rate and the transmission power variation in each node
over time are depicted in Figure 11. The suggested algo-
rithm basically follows the Cucker–Smale flocking model.
Therefore, the convergence is guaranteed. The results also
show that when the link transmission rates converge, the
node with the best initial link rate uses the lowest transmit
power, while the node with the worst initial link rate uses
the maximum transmit power. Because the higher transmit
power induces more interference, the optimal strategy is to
enable the transmitting node with the best link to use the
lowest transmit power, thereby causing the least interference
and increasing the transmission rates of the other links.

The above reasoning is supported by the notion that
the strongest bird positions itself at the head of the flock,
where the air resistance is the greatest, in order to support
the weaker birds that follow when migrating as a flock. The
velocity vectors of birds have a solidarity property owing

to the air resistance. Additionally, they have a max–min
objective because their flying speed is limited by the speed
of the slowest bird. Accordingly, we can understand that the
synchronization of velocity in the flights of flocking birds is
the optimal solution for achieving their objective [42, 43].

3.7. Comparisons between Nature-Inspired and Conventional
Synchronizations. In this section, the nature-inspired and
conventional approaches are compared in terms of time
synchronization. The characteristics, advantages, and disad-
vantages of nature-inspired time synchronization methods
are evaluated compared with the conventional centralized
and distributed time synchronization methods.

Centralized time synchronization methods use global
time orientations, such as global positioning system (GPS)
time [44] and network time protocol (NTP) [45]. All nodes
listen for the reference time provided from the central clock
and adjust their own time in order to synchronize. This



Mobile Information Systems 9

Node 1 
Node 2 
Node 3 
Node 4 

Node 5 
Node 6 
Node 7 

0

0.5

1

1.5

2

2.5

3

3.5

4
Li

nk
 ra

te
 (b

/s
/H

z)

300 10 20 40
Time

(a)

Node 1 
Node 2 
Node 3 
Node 4 

Node 5 
Node 6 
Node 7 

3010 20 400
Time

25

5

10

15

20

Tr
an

sm
iss

io
n 

po
w

er
 (d

Bm
)

(b)

Figure 11: (a) Link rate and (b) transmission power over time for the maximization problem of end-to-end throughput in wireless multihop
networks.

process enables accurate synchronization with high reliabil-
ity; however, it involves a high cost in terms of hardware
implementation and energy consumption.Moreover, the syn-
chronization performance is related to the respective distance
to the central clock, which limits the network scalability.

The conventional reference broadcast synchronization
(RBS) method [46] is a typical distributed time synchro-
nization method that is not nature-inspired. Without using a
central global clock, RBS engenders mutual synchronization
among the network nodes. Thus, precise synchronization is
possible without a delay from the central clock. However,
the time information of each node should be shared with
all the other nodes so that an immense amount of data can
be exchanged between the nodes. As the number of nodes
increases, multihop RBS is required and the data exchange
overhead likewise increases, resulting in the decrease of per-
formance.

Unlike these methods, nature-inspired time synchro-
nization methods [19–24] can achieve synchronization in a
distributed and efficient manner regardless of the number of
nodes in a large-scale network. Table 1 summarizes the char-
acteristics, advantages, and disadvantages of the conventional
synchronization methods and those of the nature-inspired
synchronization methods.

4. Research Challenges

In this section, we examine further research challenges that
should be considered in utilizing natural synchronization
phenomena for the future communication and networking

systems. The considered research challenges are classified as
in Figure 12.

4.1. Challenges for Convergence Performance. The synchro-
nization algorithm conducts iterations in a dynamic environ-
ment. Thus, the performance related to convergence is very
important. According to the number of nodes, initial value,
network topology, and coupling strength, we must theoreti-
cally analyze the existence, value, and rate of convergence, or
we must empirically recognize the tendency of convergence.
To increase the convergence rate, we must design a network
topology that can stimulate rapid synchronization based on
the results of many experiments in a variety of network envi-
ronments. These include random, small-world, and large-
scale networks, as well as locally connected regular networks.

According to studies conducted thus far, a network
wherein all nodes are fully connected is known to guarantee
the convergence regardless of the number of nodes and the
initial value [9]. Therefore, in order to guarantee the conver-
gence, it is necessary to arbitrarily make the network fully
connected. Alternatively, a hierarchical method can be con-
sidered in which a network is clustered as a fully connected
network at a local level. Then, synchronization is engaged at
the upper level with the locally converged information.

The convergence rate has a tradeoff relationship with the
accuracy of the convergence value. If the convergence value
is set at a discrete level instead of a real value from a practical
perspective, the convergence rate can be controlled according
to the number of levels. For example, the convergence value
in the synchronization of transmission rate is mapped to
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Table 1: Comparison of conventional and nature-inspired synchronization methods.

Item Conventional synchronization method Nature-inspired synchronization method

Reliability High reliability and accuracy; short
convergence time

Guaranteed reliability; accurate synchronization in
large-scale networks

Scalability Limited by the numbers of nodes and
hops

Scalability maintained regardless of the number of nodes
and changes

Robustness Vulnerable to network topology changes,
such as cluster head failures

Robust to poor communication environments and network
topology changes

Cost Very high; message exchange of upper
layers is required

Low amount of data exchange; can be simply operated
through pulse exchange at the physical layer without upper
layer protocols

Complexity Very high hardware (HW)/software (SW)
complexity

Low HW/SW complexity (not necessary to save time
information of other nodes in the memory)

Influential factors for
performance

Synchronization accuracy depends on the
distance to root nodes

Affected by node density, coupling strength, delay, noise,
path loss, and modulation method

Advantage

High reliability; effective with an
appropriate number of nodes; not
dependent on the global clock in the case
of RBS

High scalability and robustness; low cost and complexity;
effective with a large number of nodes

Disadvantage

Poor performance of outer nodes in the
topology in cases of centralized
synchronization; a large amount of
exchanged data is required in distributed
synchronization

Synchronization is impossible when the transmission and
reception delays take a long time; synchronization speed
decreases with weak coupling strength and a small number
of nodes

Performance
improvement

Environmental
constraints

Convergence
performance

Research challenges

Convenience
analysis

Network
topology
design

Convergence
rate control

Wireless
channel
impairment

Communication
delays

Deafness
problem

Heterogeneous
oscillators

Signaling
overhead

Parameter
optimization

Security Multiple
oscillators

Leader
selection

Figure 12: Classification of research challenges.

the modulation and coding scheme (MCS) level in reality.
Thus, the convergence rate can be controlled according to
the number of MCS levels. On the contrary, the number
of MCS levels can be determined according to the required
convergence rate.

4.2. Challenges of Environmental Constraints. Path loss,
noise, delay, and packet loss occurring in real environ-
ments influence synchronization.The weakening of coupling
strength due to path loss and packet loss reduces the con-
vergence rate, while delay and noise are major factors that
interfere with synchronization [10]. When applying a syn-
chronization algorithm to a real environment, it is therefore
necessary to design the algorithm with consideration of all
these interfering factors.

A receiving node may be unable to immediately respond
on account of a communication delay. Consequently, the syn-
chronization may not be completed. Specifically, the com-
munication delay can be divided into a transmission delay,

decoding delay, and propagation delay. It is necessary to
redesign a synchronization algorithm considering the statis-
tical ranges of these delays. Moreover, a wireless communi-
cation node cannot receive data while simultaneously trans-
mitting. Thus, it cannot recognize the firing of other nodes
while it is firing. Therefore, the firing period should be set to
cross one another to avoid such “deafness” problems in wire-
less communication environments.

To date, research has been conducted only on homoge-
nous oscillators that follow the same rule. However, in
reality, heterogeneous oscillators may exist that adhere to
different synchronization rules in the same situation on
account of the network heterogeneity. Therefore, research
should be conducted on synchronization algorithms when
the heterogeneous oscillators are intended to cooperatively
achieve a certain collective purpose.

For the real operation of the synchronization algorithms
described in Section 2, periodic data exchange among neigh-
boring nodes is required. Consequently, signaling overhead
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occurs. Considering this kind of overhead cost, the point
at which it is more effective to apply nature-inspired syn-
chronization methods over conventional synchronization
methods should be determined. Depending on the situation,
a hybrid synchronization algorithm can be considered that
adaptively applies both types of methods.

4.3. Challenges to Performance Improvement. Depending on
network topology changes in the wireless environment, syn-
chronization performance can be improved by optimizing the
operation parameters of the synchronization algorithm, such
as the coupling strength, weight, and step size. The mapping
relations between operation parameters and environment
variables should be configured through various experiments.

In terms of network security, a method is required to
enhance the tolerance of systems againstmalicious nodes that
intentionally interferewith the synchronization. For example,
a synchronization algorithm can be designed to ignore cer-
tain information with the maximum deviation from the aver-
age of the information received from neighboring nodes. A
synchronization algorithm that considers unnecessary infor-
mation should be devised and it should be verified whether
it is possible to achieve a desired convergence perform-
ance.

When there are two or more oscillators in a single node, a
method that can utilize multiple oscillators should be consid-
ered. In [28], proportional fair scheduling was conducted in a
distributed manner using two oscillators.Therefore, complex
synchronization phenomena with several oscillators need to
be studied for developing a new application that utilizes them.

It is possible to converge the values of all nodes into a
desired value by selecting a leader and setting only its value.
For example, in aircraft engineering, by controlling the single
leader in flock-like flight formation, this method can enable
all the rest of the aircrafts to automatically follow that specific
aircraft. In addition, the transmission rate of all nodes can be
equalized by controlling only the rate of the leader. However,
this kind of approach that controls the convergence value only
through a leader may be unable to guarantee the convergence
depending on the environment. Thus, a theoretical study to
address that issue should be conducted.

5. Discussion and Prospect

The reason why we focus on synchronization phenomena
can be explained as follows. First of all, the natural envi-
ronment in which synchronization occurs is similar to the
environments in which many engineering problems occur.
Synchronization occurs among a number of individuals. It
also occurs in a completely distributed system in which
each individual decides its own action with consideration of
only the surrounding environment or situation. In addition,
individuals perfectly synchronize in dynamic environments
where obstacles or adversariesmay appear, andnodes enter or
exit. These kinds of environments in which synchronization
occurs inspire many engineering problems in large-scale
networking, distributed, and dynamic environments.

Secondly, the purpose of synchronization in nature can
be understood as the same as engineering objectives. Insects,

birds, fish, and other animals that form groups are known to
synchronize for migration, mating, protection from preda-
tors, and efficient searching for food [3]. These creatures
exhibit solidarity and thus engage in synchronization for col-
lective goals. These goals are typically for survival purposes.
Such animal populations use synchronization as an optimal
strategy for surviving while evolving through time. Likewise,
a number of nodes in systems, such as sensor networks,
multivehicle systems, and multihop network, must achieve
a collective objective with solidarity. Their objectives are to
rapidly obtain useful information, quickly move together
over long distances, and maximize the end-to-end through-
put, respectively. These goals are not for maximizing the per-
formance of individual nodes; rather, they serve to maximize
the performance of the entire system.Therefore, the purposes
of engineering systems correspond to those demonstrated
by collectives of creatures. It is thus reasonable to employ
synchronization as the optimal solution to problems that exist
in engineering systems.

Lastly, synchronization in nature is more efficient than
any centralized or distributed system available. For example,
thousands of fireflies engender the synchronization phe-
nomenon in the fastest and most efficient way with limited
resources. They use a very simple method and achieve
synchronization within a short period of time. Therefore,
mimicking these natural approaches can enable engineering
systems to achieve performances at a similar level of low
complexity and cost in situations with limited resources.

The point at which nature-inspired technologies will
becomemore effective than existing approaches will be when
the number of nodes comprising a system increases beyond a
certain level. Owing to the advancement of communication
network technologies, the number of nodes connected to
networks is drastically increasing each year. The increase
of nodes accelerates the shortage of resources and incurs
the high cost of centralized management. Conventional
centralized technologies developed in consideration of a
limited number of nodes can neither operate with a large
number of nodes nor guarantee the required performance.
Thus, naturally, a shift to distributed systems is required.
However, distributed system technologies developed under
the centralized paradigm still bear the limitation concerning
the increase in the number of nodes. Furthermore, they are
vulnerable to environmental changes due to the incomplete-
ness of the distribution [46]. Therefore, a paradigm shift to
new distributed systems is necessary and it is imperative to
focus on the distributed algorithms of collective organisms
in nature as an effective methodology to be applied.

6. Conclusion

In this article, we identified the principles of various natural
synchronization phenomena and studied how they can be
applied in practical communication and networking systems.
In terms of time synchronization methods in networks,
the strengths and weaknesses of conventional approaches
and nature-inspired approaches were compared. Further
research challenges that are necessary for realizing nature-
inspired synchronization technologies were presented. The
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rapid increase of the number of networking nodes will
accelerate the occurrence of complex and distributed network
environments, which are getting similar to the environment
of nature. Therefore, it would be a great help for us to mimic
and apply the fundamental principles of biocommunities in
which each entity has shown collective behaviors to sustain
their lives in the midst of complex and chaotic environments.
In the future, various studies considering practical issues
are required to effectively apply these principles to mobile
communication and networking systems.
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